## CORRIGENDA

MTE 503, Math. Comp., v. 27, 1973, pp. 451-452.

In the editorial footnote there are two typographical errors in the portion relating to the case where $a^{2} \leqslant 1$; namely, the first term should read $\pi \ln \left[\left(1+\left(1-a^{2}\right)^{1 / 2}\right) / 2\right]$ and the second term should read $-2\left(\sin ^{-1} a\right) \ln \left[\left(1+\left(1-a^{2}\right)^{1 / 2}\right) / a\right]$.

It seems appropriate to mention here that the expression given by the authors of this notice can be replaced by

$$
\pi \ln \frac{1+a}{4}+4 G-4 \sum_{k=1}^{\infty} \frac{b^{k}}{k}\left[\frac{\pi}{4}-\sum_{n=1}^{k} \frac{(-1)^{n+1}}{2 n-1}\right],
$$

which is preferable for small values of $a$ and yields the correct value of zero when $a=0,(b=1)$.

Henry E. Fettis

1885 California, Apt. 62
Mountain View, California 94041
J. M. Blair, C. A. Edwards \& J. H. Johnson, "Rational Chebyshev approximations to the Bickley functions $\operatorname{Ki}_{n}($ (x)," Math. Comp., v. 32, 1978, pp. 876-886.

The following typographical corrections are required in the microfiche supplement to this paper: in the heading of Table 28 the expression $q_{0}+$ $\xi\left(q_{1}+x\left(q_{2}+\xi\left(q_{3}+q_{4}\right)\right)\right)$ should read $q_{0}+\xi\left(q_{1}+x\left(q_{2}+\xi\left(q_{3}+q_{4} x\right)\right)\right)$, and in the headings of Tables 68 and 69 the expression $\sum_{j=3}^{4} p_{j} \xi_{1}^{j-3}$ should read $\Sigma_{j=3}^{4} p_{j} \xi_{1}^{j-2}$.
J. M. Blair

Atomic Energy of Canada Limited
Chalk River Nuclear Laboratories
Mathematics and Computation Branch
Chalk River, Ontario K0J 1J0, Canada
G. Avdelas \& A. Hadjidimos, "Optimum accelerated overrelaxation method in a special case," Math. Comp., v. 36, 1981, pp. 183-187.

On p. 186, in the Table of Optimum Values, Case (iib), the last term in the numerator of the expression for the acceleration factor $r$ should read $+\left(1-\bar{\mu}^{2}\right)^{1 / 2}$ in place of $-\left(1-\bar{\mu}^{2}\right)^{1 / 2}$.

In the third line from the bottom of the same page, for $(-5 / 4,5 / 3)$, read (35/12,5/3).
A. Hadjidimos

Department of Mathematics
University of Ioannina
Ioannina, Greece

